/**********

Testcycle/2

Aphors are descriptions of objects, for example an apple is a "red sphere". An aphor may be tested to be a member of a list of aphors.

The algorithm Testcycle/2 tests an aphor describes the same shape as an another aphor (whether a cycle through a shape can be found in another shape).

testcycle/2(+Program1, +Program2).

(+ means input, - means output)

Testcycle/2 takes a pair of shape-drawing programs, e.g. (forward 1 step, right L0.25) (where the Lucian Angle of L0.25=90 degrees) and tests whether they draw the same shape.

	Program1
	A program which is a list of commands in the format [<Command>, <Value>], i.e. f - forward, b - back, l - left and r - right, where the Value for left and right are Lucian Angles.

	Program2
	The same as Program1, with commands forward, back, left and right and Lucian Angles.

The inputs (the two programs) to the program have the output "Yes" if they follow the same cycle, for example:

Figure 1. The right-angle triangle (a) is drawn by starting at A, moving forward 1 unit, turning right L0.375 = 135 degrees, moving forward 1.41 units, turning right L0.375, moving forward 1 unit and turning right L0.25 = 90 degrees, finishing at A, by the program [[f, 1], [r, 0.375], [f, 1.41421356], [r, 0.375], [f, 1], [r, 0.25]] and the same-shaped right-angle triangle (b) is drawn by starting at B and moving forward 1.41 units, turning right L0.375 = 135 degrees, moving forward 1 unit, turning right L0.25=90 degrees, moving forward 1 unit and turning right L0.375, finishing at B, by the program [[f, 1.41421356], [r, 0.375], [f, 1], [r, 0.25], [f, 1], [r, 0.375]]. The sample input (c) tests that the two programs describe the same shape. The output of the program, the word “Yes” indicates that the two shapes describe the same shape.

1(a).
1(b).

1(c). testcycle([[f, 1], [r, 0.375], [f, 1.41421356], [r, 0.375], [f, 1], [r, 0.25]], [[f, 1.41421356], [r, 0.375], [f, 1], [r, 0.25], [f, 1], [r, 0.375]]).
Yes

Figure 2. The right-angle triangle (a) is drawn by starting at A, moving forward 1 unit, turning right L0.375 = 135 degrees, moving forward 1.41 units, turning right L0.375, moving forward 1 unit and turning right L0.25 = 90 degrees, finishing at A, by the program [[f, 1], [r, 0.375], [f, 1.41421356], [r, 0.375], [f, 1], [r, 0.25]] and the same-shaped right-angle triangle (b) is drawn by starting at C and moving forward 1 unit, turning left L0.25 = 90 degrees, moving forward 1 unit, turning left L0.375 = 135 degrees, moving forward 1.41 units, turning left L0.375, finishing at C, by the program [[f, 1], [l, 0.25], [f, 1], [l, 0.375], [f, 1.41421356], [l, 0.375]]. The sample input (c) tests that the two programs describe the same shape. The output of the program, the word “Yes” indicates that the two shapes describe the same shape.

2(a).
2(b).

2(c). testcycle([[f, 1], [r, 0.375], [f, 1.41421356], [r, 0.375], [f, 1], [r, 0.25]], [[f, 1], [l, 0.25], [f, 1], [l, 0.375], [f, 1.41421356], [l, 0.375]]).

Yes

**********/

	testcycle(Program1, Program2) :-
	%% Tests whether Program1 and Programs draw the same shape.

	closed1(Program1),

	%% Tests that Program1 draws a shape with ends closed together.

	closed1(Program2),

	%% Tests that Program2 draws a shape with ends closed together.

	collinear(Program1, Program2).

	%% Tests that Program1 and Program2 draw shapes that have collinear points in common.

/**********

closed1(+Program)

Closed1/1 tests that Program1 draws a shape with ends closed together.

Program The program that draws the shape, with forward, back, left and right commands and each angle as a Lucian Angle.

**********/

	closed1(Program) :-

	%% Tests that Program draws a shape with ends closed together.

	closed2(Program, [0, 0], [X1, Y1], 0, Heading),

	%% Tests that Program1, starting at (0, 0), finishing at (X1, Y1), starting by pointing L0 and finishing by pointing to Heading, draws a shape with ends closed together.

	-0.00001 =< X1, X1 < 0.00001,
	%% Tests that the X co-ordinate of the final point drawn of the shape isbetween -1 (10-5 and 1 (10-5.

	-0.00001 =< Y1, Y1 < 0.00001,
	%% Tests that the Y co-ordinate of the final point drawn of the shape is between -1 (10-5 and 1 (10-5.

	-0.01 =< Heading, Heading < 0.01.

	%% Tests that the Lucian Angle, the Heading after the shape is drawn, is between -1 (10-2 and 1 (10-2.

/**********

closed2(+Program, [+X1, +Y1], [-X2, -Y2], +Heading1, -Heading2)

Closed2/5 runs the program, starting at X1, Y1, pointing at Heading1 and finishes at X2, Y2, pointing at Heading2.

	Program
	A program which is a list of commands in the format [<Command>, <Value>], i.e. f - forward, b - back, l - left and r - right, where the Value for left and right are Lucian Angles.

	X1
	Initial X co-ordinate of the current point of the shape.

	Y1
	Initial Y co-ordinate of the current point of the shape.

	X2
	Final X co-ordinate of the current point of the shape.

	Y2
	Final Y co-ordinate of the current point of the shape.

	Heading1
	Initial direction the ray from the current point of the shape will be pointing.

	Heading2
	Final direction the ray from the current point of the shape will be pointing.

**********/

	closed2([], [X, Y], [X, Y], Heading, Heading).
	%% The base case returns the X and Y co-ordinates and heading of the final point when the program has been processed.

	
	

	closed2(Program, [X1, Y1], [X2, Y2], Heading1, Heading2) :-
	%% The program is run, starting at X1, Y1, pointing at Heading1 and finishes at (X2, Y2), pointing at Heading2.

	Program = [Command1 | Commands],
	%% The first command is taken from the program.

	Command1 = [Command2, Value],
	%% The command name and its value are taken from the command.

	transform(Command2, Value, X1, Y1, Heading1, X3, Y3, Heading3),
	%% The command, e.g. f - forward, b - back, l - left and r – right is run.

	closed2(Commands, [X3, Y3], [X2, Y2], Heading3, Heading2).
	%% The rest of the commands are run.

/**********

transform(+Command, +Distance, +X1, +Y1, +LucianAngle1, -X2, -Y2,
-LucianAngle2)

Transform/8 moves forward or back by Distance, starting at (X1, Y1) and finishing at X2, Y2 or turns left or right, starting at LucianAngle1 and finishing at LucianAngle2.

	Command
	A command, i.e. f - forward, b - back, l - left or r – right.

	Distance
	The distance to move forward or back.

	X1
	Initial X co-ordinate.

	Y1
	Initial Y co-ordinate.

	LucianAngle1
	Initial Lucian Angle, where L0 = 0° and L1 = 360°.

	X2
	Final X co-ordinate.

	Y2
	Final Y co-ordinate.

	LucianAngle2
	Final Lucian Angle, where L0 = 0° and L1 = 360°.

**********/

	transform(f, Distance, X1, Y1, LucianAngle1, X2, Y2, LucianAngle1) :-
	%% If the command is f – forward, move forward for Distance starting at (X1, Y1), pointing at LucianAngle1, and finishing at (X2, Y2), pointing at LucianAngle1.

	findnewdistance(LucianAngle1, Distance, DX, DY),
	%% Calculates the components DX and DY of Distance pointing at LucianAngle1.

	X2 is X1 + DX,
	%% Calculates the new x co-ordinate X2 by adding DX to X1.

	Y2 is Y1 + DY.
	%% Calculates the new y co-ordinate Y2 by adding DY to Y1.

	
	

	transform(b, Distance, X1, Y1, LucianAngle1, X2, Y2, LucianAngle1) :-
	%% If the command is b – back, move back for Distance starting at (X1, Y1), pointing at LucianAngle1, and finishing at (X2, Y2), pointing at LucianAngle1.

	findnewdistance(LucianAngle1, Distance, DX, DY),
	%% Calculates the components DX and DY of Distance pointing at LucianAngle1.

	X2 is X1 - DX,
	%% Calculates the new x co-ordinate X2 by subtracting DX from X1.

	Y2 is Y1 - DY.
	%% Calculates the new y co-ordinate Y2 by subtracting DY from Y1.

	
	

	transform(l, Angle1, X, Y, Heading1, X, Y, Heading2) :-
	%% If the command is l - left, turn left for Angle1 starting at (X, Y), pointing at Heading1, and finishing at (X, Y), pointing at Heading2.

	Angle2 is Heading1 - Angle1,
	%% Calculates the new angle Angle2 by subtracting Angle1 from Heading1.

	normalise1(Angle2, Heading2).
	%% Normalises Angle2 to the angle between 0 and 1, Heading2.

	
	

	transform(r, Angle1, X, Y, Heading1, X, Y, Heading2) :-
	%% If the command is r – right, turn right for Angle1 starting at (X, Y), pointing at Heading1, and finishing at (X, Y), pointing at Heading2.

	Angle2 is Heading1 + Angle1,
	%% Calculates the new angle Angle2 by adding Angle1 to Heading1.

	normalise2(Angle2, Heading2).
	%% Normalises Angle2 to the angle between 0 and 1, Heading2.

/**********

findnewdistance(LucianAngle, Distance, DX, DY)

Finds the X and Y components of Distance in direction LucianAngle.

	LucianAngle1
	Lucian Angle, where L0 = 0° and L1 = 360°.

	Distance
	The distance to move forward or back.

	DX
	X component of Distance in direction LucianAngle.

	DY
	Y component of Distance in direction LucianAngle.

**********/

	findnewdistance(LucianAngle1, Distance, DX, DY) :-
	%%

	sinla(LucianAngle1, SinLucianAngle),
	

	cosla(LucianAngle1, CosLucianAngle),
	

	DX is Distance * SinLucianAngle,
	

	DY is Distance * CosLucianAngle.
	

/**********

sinla(LucianAngle, SinLucianAngle) :-

 lucianangletodegrees(LucianAngle, Degrees),

 SinLucianAngle is sin((Degrees / 180) * 3.14159265).

/**********

cosla(LucianAngle, CosLucianAngle) :-

 lucianangletodegrees(LucianAngle, Degrees),

 CosLucianAngle is cos((Degrees / 180) * 3.14159265).

/**********

lucianangletodegrees(LucianAngle, Degrees) :-

 Degrees is LucianAngle * 360. %% Convert Lucian Angle to Degrees.

/**********

normalise1(Angle, 0) :-

 Angle is 1.0, !.

normalise1(Angle1, Angle2) :-

 floor(Angle1, Value1),

 Value2 is Value1 - 1,

 Angle2 is Angle1 - Value2.

normalise2(Angle1, Angle2) :-

 floor(Angle1, Value),

 Angle2 is Angle1 - Value.

/**********

%% check shapes are collinear

collinear(Program1, Program2) :-

 rotate1(Program1, Program2).

collinear(Program1, Program2) :-

 reverse(Program1, Program3),

 swaplr1(Program3, [], Program4),

 rotate1(Program4, Program2).

/**********

rotate1(Program1, Program2) :-

 rotate2(Program1, Program1, [], Program3),

 member(Program2, Program3).

/**********

rotate2([], _Program1, Program2, Program2).

rotate2(Program1, Program2, Program3, Program4) :-

 Program1 = [_Head1 | Tail1],

 Program2 = [Head2 | Tail2],

 append(Tail2, [Head2], Program5),

 append(Program3, [Program5], Program6),

 rotate2(Tail1, Program5, Program6, Program4).

/**********

swaplr1([], Program, Program).

swaplr1(Program1, Program2, Program3) :-

 Program1 = [Command1 | Commands],

 swaplr2(Command1, Command2),

 append(Program2, [Command2], Program4),

 swaplr1(Commands, Program4, Program3).

/**********

swaplr2(Command1, Command2) :-

 Command1 = [l, Value],

 Command2 = [r, Value], !.

swaplr2(Command1, Command2) :-

 Command1 = [r, Value],

 Command2 = [l, Value], !.

swaplr2(Command, Command).

1. [f, 1]

2. [r, 0.375]

3. [f, 1.41421356]

4. [r, 0.375]

5. [f, 1]

6. [r, 0.25]

4. [r, 0.25]

3. [f, 1]

2. [r, 0.375]

1. [f, 1.41421356]

6. [r, 0.375]

5. [f, 1]

3. [f, 1]

4. [l, 0.375]

5. [f, 1.41421356]

6. [l, 0.375]

1. [f, 1]

2. [l, 0.25]

1. [f, 1]

2. [r, 0.375]

3. [f, 1.41421356]

6. [r, 0.25]

5. [f, 1]

4. [r, 0.375]

C

A

B

A

